\(\int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [565]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 57 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[Out]

-2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*B*(cos(1/2*d*x+
1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*A*sin(d*x+c)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 57, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2827, 2716, 2719, 2720} \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d} \]

[In]

Int[(A + B*Cos[c + d*x])/Cos[c + d*x]^(3/2),x]

[Out]

(-2*A*EllipticE[(c + d*x)/2, 2])/d + (2*B*EllipticF[(c + d*x)/2, 2])/d + (2*A*Sin[c + d*x])/(d*Sqrt[Cos[c + d*
x]])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rubi steps \begin{align*} \text {integral}& = A \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx+B \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-A \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.89 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \left (-A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {A \sin (c+d x)}{\sqrt {\cos (c+d x)}}\right )}{d} \]

[In]

Integrate[(A + B*Cos[c + d*x])/Cos[c + d*x]^(3/2),x]

[Out]

(2*(-(A*EllipticE[(c + d*x)/2, 2]) + B*EllipticF[(c + d*x)/2, 2] + (A*Sin[c + d*x])/Sqrt[Cos[c + d*x]]))/d

Maple [A] (verified)

Time = 4.35 (sec) , antiderivative size = 150, normalized size of antiderivative = 2.63

method result size
default \(\frac {4 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(150\)
parts \(-\frac {2 A \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}+\frac {2 B \,\operatorname {am}^{-1}\left (\frac {d x}{2}+\frac {c}{2}| \sqrt {2}\right )}{d}\) \(202\)

[In]

int((A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2*(2*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)
*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipti
cF(cos(1/2*d*x+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 156, normalized size of antiderivative = 2.74 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {-i \, \sqrt {2} B \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} B \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} A \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} A \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, A \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{d \cos \left (d x + c\right )} \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*B*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*B*cos(d*x + c
)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - I*sqrt(2)*A*cos(d*x + c)*weierstrassZeta(-4, 0,
weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + I*sqrt(2)*A*cos(d*x + c)*weierstrassZeta(-4, 0, w
eierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*A*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x +
c))

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {A + B \cos {\left (c + d x \right )}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(3/2),x)

[Out]

Integral((A + B*cos(c + d*x))/cos(c + d*x)**(3/2), x)

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/cos(d*x + c)^(3/2), x)

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/cos(d*x + c)^(3/2), x)

Mupad [B] (verification not implemented)

Time = 15.48 (sec) , antiderivative size = 60, normalized size of antiderivative = 1.05 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2\,B\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int((A + B*cos(c + d*x))/cos(c + d*x)^(3/2),x)

[Out]

(2*B*ellipticF(c/2 + (d*x)/2, 2))/d + (2*A*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c
+ d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))